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RATIONAL MODELING BY PENCIL-OF-FUNCTIONS METHOD )
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Senior Member, IEEE Senior Member, IEEE Member, IEEE .
ABSTRACT

Pole-zero modeling of lignnls, such as an electromagnetic-
scatterer response, 1s considered in this paper. It is shown by use of
pencil-of-functions theorem that (a) the true parameters can be recovered
in the ideal case (where the signal is the impulse response of a rational
function H(z)), and (b) fhe parameters are optiﬁal in the functional depen-
dence sense when the observed data are corrupted by additive noise or by
systematic error. Although the computations are more involved than 1n all-
pole modeling, they are considerably less than those required in iterative
schemes of pole-zero modeling. The advantages of the method are demon-
strated by a simulation example and through application to the electro-
magnetic response of a scatterer.

The paper also includes very recent and promising results on a new
approach to noise correction. 1In contradistinction.with spectral subtraction
techniques, where only amplitude information is emphasized (and phase is
ignored), we propose a method that (a) estimates the noise spectral density
for the data frame, and then (b) performs the subtraction of the noise corre-

lation matrix from the Gram matrix, of the signal.

I. INTRODUCTION
Signal representation and approximation [1]-[4] 1is basic to (a) time-domain
extraction of singularities of a scatterer's field pattern [S],[6].[16] and to (b)

recursive digital-filter synthesis [7], [12]). It is also useful in (c) bandwidth
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#*Dept. of Electrical Eng. Rochester Inst. of Tech. Rochester, N.Y. 14523
#Dept. of Electrical Eng. Syracuse University, Syracuse, N.Y. 13210

This work was supported by the Office of Naval Research under contract No.
N00014-79-C-0598.
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compression of signals [2], and (d) time-domain measurement and testing of

networks/channels. This paper discusses a unified approach to representing
or approximating a given empirical signal x(t) by sum of exponentials, i.e.,

for finding the right hand side of

n ‘it
x(t) § y(e) = I d1 e «~+ Y(8) (1a)
i=1
n d1
Ye) = I o (1)
1=1 84
or, equivalently, the right hand gide of the sampled version
b K
x(k) = yk) = I R (z))" + Y(2) (22)
i=]1 ’
n R
) = I —i
i=] (l-ziz )
-1 -ntl
. b +bz +...4b .2z
-1 -1
1+ alz + ... + anz {
- ngzz
A(z) (2v)

The poles 8y (or z, in z-domain) are either real, or they occur in complex

i
conjugate pairs.

When equality holds in (2a), the sampled signal x(k) is said to be
rational of order n, and thus rationally representable. Additionally, if
Re s, <0 (or, |z1|< 1) it is said to be stable-rational of order n.

In the method described here, ;he given signal is processed in reverse-
time by a cascade of first order digital filters to yield a family of infor-
mation signals. The Gram matrix F of these information signals is shown_to

contain the essential information on the denominator parameters of Y(z).
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Specifically, it is shown that A(z) is determined as

nt+l
A= @ [ d -0

i=1

1

vhere D, are the diagonal cofactors of the matrix F. The numerator para-

i
meters are then determined using a least-squares fit, i.e., b = -P°1£,
where P and ¢ are defined in the paper.
The entire procedure is thus noniterative and computationally efficient.
Iterative methods, such as the modified Newton method (2], require as many
as a hundred iterations, each involving a matrix inversion. Our computations

are roughly equivalent to two nAtrix inversions. It is a generalization of

the method developed in [8] to reverse-time processing by first order filters.

This formulation results in a lower order matrix (n+l dimensional) than did

| the formulation in [ 8 (2n+l dimensional). Examples presented demonstrate (1)
f» noiseworthiness in the representation problem when data are corrupted by
noise and (ii) the effectiveness of the method in the approximation problem.
Comparison of the method with the maximum entropy method (or all-pole linear

predictor) and the Prony method [1], [4] is also included in the paper.

II. FIRST-ORDER FILTER BASED INFORMATION SIGNALS

Suppose a suitable K has been selected such that x(k) = 0 for k > K (so

i

that use of the upper limit K-1 instead of ® on summations may be permitted). .

We define the reverse-time first-order filtered signals as (see Fig. 1)

x, (k) = x(k)

xz(k) qxz(k+1) + xl(k) . _ (3)

’Sl(k) -

qxn(k+1) + xn(k)




. ~ D
r-m'.

where N = ntl, and xi(K) =0fori=1,2, ..., N. Further, 0 < q<1,

This family of lignalsl. which ve shall call information signals,

possesses the interesting property stated below.

Lemma 3
If x(k) = y(k) is stable-rational of order n with poles z:» then the
corresponding information signals are also stable rational of order n with

the poles s

o By x
Year(K) = T ——m3m (z,) (&)

Proof: We prove this by induction. For i=0 the statement is trivially true
since (4) is identical to (2) for this case. Assuming it to be true for i=1l,
let us proceed to prove it is true for {.

From (3)

yi‘l’l(k) - qyi+1.(k+1) + yi(k)

which is readily shown to be equivalent to

. vk
Vi ) = v’_-'kq ¥4 (V)
n R @
= 3 -—-—i——i_—l‘ z quk(zz)v
=1 (1-q zz) v=k

(from induction hypothesis)
n R o
i k z:abk(

- —1 ., z
=1 (1-q 2™ E vt

)V—k

The result of equation (3) follows immediately by observing that

1 The nomenclature ‘information signal' is not to be confused with traditional
information theoretic concepts. It is used here because these signals will
be shown to yield the denominator parameters of Y(z).
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. .
I qv-k (zz)v-k R

wk (l-q z'.)

i Before leaving this section, we remark that the set ’1' ceer Yy is

linearly independent, while the set Y30 cco0 Yoo Yo is linearly dependent.

III. DETERMINATION OF PARAMETERS VIA PENCIL-OF-FUNCTIONS
THEOREM FOR RATIONALLY REPRESENTABLE SIGNALS

In this section we will determine the signal parameters for the case
x(k) = y(k), i.e., vhere the signal is rationally representable. We will
. call z, (see (2)) the poles of the impulse response, Rz the corresponding
residues, and Cz - {(zl)k} the associated modesf Note that the poles occur
in conjugate pairs whenever complex, as do the residues, since y is real.
A The significance of Lemma 1 of the previous section arises from the

fact that each of the information signals contains the modes Cl - {(zl)k}.

{ 2=1, ..., n. Further, the pencil-of-s:lgnals2 Y Y441 + ¥y also contains
211 these mcdes unless Y equals one of the poles; in the latter case, i.e.,

when y = Z Y Vo4 f vy does not contaié the mode Cﬂ - {(zn)k}. This re-

sults in the following observation
. Lemma 2. The set
(az, = Dy, +y,, (a2, -Dy; + 55, --00 (a7, -_l)yN ty, (5
is 1linearly dependent form = 1, 2, ..., n where z are the poles of the
right hand side of (2).

Definition. Define the N x N dimensfonal Gram matrix (recall, N = n+1)[11]

2 The terminology pencil-of-functions is derived from l{terature in physics
and mathematics; see, for example, Gantmacher [9] where A + AB is called
8 pencil of matrices A and B parametrized by sealer A. See also Gueguen[10]
for recent usage. Co
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k-1
<Yy s¥,> = Iy (K)y, (k) (6)
13 o 17
or, equivalently
-1 T ’
F = I £Kf(X (7
k=0

where

00 = Iy, 00 3,0 ... 3,001

We can now apply the pencil-of~functions theorem of reference [8] to
obtain the central theoretical result of this section. A statement of

pencil-of-functions theorewm is given in Appendix A.

-

Theorem 1. The poles of the impulse response y(k) must satisfy the equation

I A (V=0 (8)
g=1

where Di are the diagonal cofactors of the Gram matrix F (defined in (7)).
Proof: The theorem follows immediately upon application of the pencil-of-

functions theorem (reference {8]) to the set (5).

Note that the denominator of transform of the impulse response is given

by
N ;
A(z) = Dl.llz(qz)-n 121 Jb‘ (qz-l)u.1 (9)

This follows from (8) by dividing through by z" and by normalizing the

coefficients so that the leading coefficient becomes unity.

7
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The numerator parameters can be found by the method of least squares,
specifically by solving the linear equation
Pbec (10)

vhere b = [bo bl cee bn—llt‘ c= [c° € oo cn-llT' P= lpij]; and
Py = Yy vy ' (11a)

(11b)

ci - <ui » y>

Here uy denotes the impulse response of z-iIA(z). Note that ui(k) -
u(k-1) where u(k) is the impulse response (i{.e., inverse z-transform)
of 1/A(z). All inner products are summed from k = 0 to K-1l.

Remarks. Before leaving this section we remark that the parameters
éharacterizing the sign.al, i.e., the coefficients of the polynomials
A(z) and B(z), are recovered exactly. It 1is assumed of course that the

signal is of the form (1) and that the true model order is known.

The idea of reverse-time integration was proposed by Carr in {13 and

Jain in [I4{. BHere, we have generalized the concept of reverse-time pro- -
cessing to the case of first~order filter processing. Note that the first

order filter 1/(1-qz), used above, encompasses integration; just let q = 1. ]

IV. MODELING IN THE PRESENCE OF NOISE 1
In the last section we modeled an ideal signal from its samples. The
effect of additive noise 1s now considered. The samples available are
x(k) = y(k) + 0 w(k) (12)
vhere w(k) is a zero mean white noise process and 0 1s an unknown positive con -
stant. As iJ‘l Section II, the information signals are again genefated by

processing x(k) = xl(k) by the filter cascade of Fig. 1. (see Fig. 2).




ow (k) x, (k) x (k) xy (k)

u(z) b——l u(z) —> o ¢ ¢ —f u(2) p—a

Fig. 2. Noisy signal through first-order filters

Note, because of the linearity of the filters, that
x, (k) = 3, (k) + 0 v (k) a3

Then it can be seen that the expected value of the Gram matrix G of the

vector signal x(k) = [xl(k) xz(k) ces xN(k)]T 133

k-1
Ec=E g(k)f(k)-r-rozw (14)

k=0
where W is the covariance matrix of the unit noise vector sequence w(k) =
[wl(k) wz(k) ces wN(k)]T and is known before hand. To estimate o? and F

we use the following criterion.

Jain's ldentification Criterion [15]

Consistent with the noise and bias models the estimated Gram matrix
should achieve a minimum possible determinant. -

Using the above.ériterion and equation (14), the following estimation
procedure has been develecped.

Step 1. Estimate 02 as

82 - — . s)
¢low

vhere ®) denotes matrix inner product (i.e., zOW = I zy4 wij)'

2y , (16)

Step 2. F=0G- 3
Step 3. Use F in estimating A(z) and B(z) via (9) and (10).

The justification for formulas (15) and (16) is given in Appendix B.

3The erxpected value operator is denoted as E
9
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SIGNAL UNDER TEST

2
SIGNAL UNDER TEST
8
- = true signal + noise
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V. A COMPUTER SIMULATION EXAMPLE

Let

1-1.922"1 4 272

1- 2.682 1 + 2.476272 - 0.7822

y(k) « =3

Q- e”z ya - 38,7

T a-omszha- rejez ) - re 3971 an
(B = 0.28379; r = 0.96187, 6 = 0.30528)
be truncated at k = 99. The signal to be tested is formed as
x(k) = y(k) + o w(k) (18)

wvhere w(k) is a zero wean, uncorrelated noise sequence. The positive scalar
0 1s chosen to be 0.0425 so that the signal-to-noise ratio 4s 12 dB. The true
signal y(k) and the noisy signal x(k) Jre shown in Fig. 3.

The signal under test was modeled by

1. Pencil of functi?ns method (without applying noise correction);
reverse-time processing pole q was taken as 0.8.

2. Pencil-of-functions method with estimation of oz and F; the value
of q was again taken éo be 0.8.

3. All-pole covariance‘ technique. Minimum érror criterion, rather than
equal energy criterion was used to estdbiish the gain parameter.

4. Pole-zero model using Prony method. Note that the denominator para-
meters (and, of course, the poles) are the same as that for the all-pole
covariance method {2]. The numerator parameters are then determined by least~-
sq&ares fic.

Fifty simulation runs, each with a different sample of noise; were per-

formed. The 'mean' and 'standard deviation (S.D.)' of the various quantities

4The'a11-pole autocorrelation method yields very similar results in the present
case; hence, the autocorrelation method is not included.

12




of interest are shown in Table 1. Of course, the model order was taken to

be 3 and the number of signal samples used were 100.
The poles for the above fifty runs are listed in Appendix C, Tables C1-C3.
A graphical portrayal of the z-domain poles for 10 runs is given in Figures
&4 to 6. The location of the true poles is at the centers of the circles
shown in these figures. Judging from the nﬁrmalized mean square errors in
Table 1, as well as from the scattergrams of the poles, it appears that the.
pencil-of-functions nethoé can perform reliable modeling of a rational signal
even vhen it 1s masked.by noise. As is widely known, the Prony method (and
of course the covariance method) perform quite poorly in the presence of noise.
It is sometimes claimed that the Prony method (or the all-pole-covariance
method) performs well with short data-frame. We give the poles of ten rums
with the first 10 data points of the noisy signal used in the above experiments.
These poles are given in Fig. 7. Again a wide and unreliable scatter of the

poles is produced.

VI. APPLICATION TO AN ELECTROMAGNETIC PULSE (EMP)

As a real world épplication we consider the use of pencil-of-functions
method to the transient response of a conducting pipe tested at the ATHAMAS-I
EMP simulator. The conducting pipe is 10m long and 1lm in diameter. Hence,
the true resonance of the pipe 1s expected to be in the neighborhood of 14MHz.
Also, the pipe has been excited in such a way thaé it is reasonable to expect
only odd harmonics at the scattered fields. The data measured are the integral
of the E-field: i.e., the measured variable is a.voltage. The transient
response used for analysis is shown in Fig. 8 by the solid line. The results

of analysis by the pencil-of-functions method are given in Table 2 for an 8th

order model; the model response, with an error of 0.0125, is shown i{n Fig. 8
13
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Table |

Comparison of Pencll-of-Functions Method With

All-pole covariance and Prony Methods
(Results of fifty moisy runs: SNR=12 dB)

Mean + S.D. POF POF with =20 All-pole Prony
nojse ri ’
of correction covariance
) 2, -2.5974 + 0.0216 -2.6753 + 0.0185 ~0.5200 + 0.0747
a, 2.3438 + 0.0388 2.4698 + 0.0331  -0.2334 + 0.1123
2 -0.7288 + 0.0187 -0.7803 + 0.0160 0.0161 + 0.0710
{ Error (NMSE) 0.0314 + 0.0095 ©0.0055 + 0.0052 0.1726 + 0.0164 0.1493+0.0098

Note: From (17) the true parameters are a - -2.68, a, = -2.476 and ay = -0.782

The denominator parameters for the all-pole-covariance method are the

same as those of the Prony method

14
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Fig. 4, Poles obtained in ten (10) simulotion runs by ]
: pencil-of-functions method.
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Fig. 5. Poles obtalned {n ten (10) simulation runs by
pencil-of-functions method with noise estimation.
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Fig. 6. Poles obtalned In ten (10) simulation runs by :
' Prony method. 1
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z-plane poles of
model Y(2)
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Fig. 7. Poles obtoined in ten (10) simulation runs by
) Prony method with short frame (K=10).
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by the dotted 1line. The sampling interval 1s A = 0.97656 ns and the number
of samples analyzed is K - 245. Note that noise estimation and correction,

as described in Section IV, has been used in the analysic.‘

Table 2
Poles of a Scatterer Response Estimated by

Pencil-of-Functions Method (q=0.8)

fundamental -5.72 +j 6B.63 Mrad/s (10.96 MHz)
3rd harmonic =30.65 +j 212.60'Hrad/s (33.83 Muz)
curve-fit pair -1.95 +§ 8.72 Mrad/s (1.42 . MHz)
curve-fit pair =20.17 +3 95,58 Mrad/s (15.55 MHz)

VII. RECURSIVE DIGITAL FILTER SYNTHESIS }ZAHPLE
As a final example we consider the use of pencil-of- “unctions technique
to digital filter synthesis. Suppose the desired impulse Tresponse is [12]
hd(k) - 0.25, k=0 .
15in(0.25k)/k, 1 < k <K = 256
It represents the causal part of the inverse DFT of a low-pass filter with
cutoff at 0.25 Hz. The application of tlhe pencil-of-functions technique,

with q = 0.4, yields the following filter

Gy = 0.25-0. 38841z 140.293462~2-0. 057832 -0. 420252 "
1 -2.46160z‘1+2.78530:'2-1.szzzsz'3+o.34885:'“

with a normalized mean-square error 0.00473. Note that the minimum value

of NMSE, as obtained in [12] by iterative methods? is 0.00346.

‘The computer output listings are given in Appendix D.
5

Seventy iterations were needed to achieve the minimum value,
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VII1. CONCLUSIONS

Pole-zero modeling of signals has been considered in this paper. It
was shown that for rational signals the true parameters can be recovered
from the Cram matrix of the information signals. The latter were formed
by reverse-time processing of the given signal by a cascade of first order
digital filters. Further, we have formulated a new approach to noise esti-
mation and correction by minimizing the determinant of the estimated Gram
matrix. The examples demonstrate the practicality of the approach, not
only because the computations are moniterative, but also because the poles
of the signal are estimated quite accurately. It is felt that the method
can be used in a broad range of applications, for example, finding the
singularities of a scatter response, modeling of speech and in spectrum
analysis.

Extension of the technique to modeling of multichannel signals with
conmon modes (or singularities) 1is possible. This work is underway. A
second area of extension pertains to the case whete‘fhe filters u(z) are
chosen to be high-pass. This might be Jseful when the signal contains an

undersirable low frequency drift component. .
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APPENDIX A

PENCIL OF FUNCTIONS

A useful mathematical entity arises by combining two given functions

defined on a common interval together with a scalar parameter -
£(t,y) = yg(t) + h(t). Q)

We call £ a pencil of functions g(t) and h(t) parametrized by y. To avoid
obvious triviality, g(t) is not permitted to be a scalar multiple of h(t).

Our work requires consideration of sets of pencils

Ygl(t) + hl(t). Ygz(t) + hz(t). ...,an(t) + hn(t) (2)
wherein the functions® gl(t),....gn(t) and hl(t)""’hn(t) span separately
a common n-dimensional subspace Ln in the function space. For a fixed set
of values of parameters y, the pencils obviously reduce to a set of functions,
and the particular values chosen determine properties such as the linear
dependence or independence of the set. The main result concerning the
linear dependence of pencil gets is derived in (8] and can be stated as
follows. -

Theorem: Given that the pencil set (2) is linearly dependent, the
parameters y must satisfy the polynomisl equation

. n-1 .
Y""Glsl-gz""'gn] +Y z/a[gil,...;hkl,....gin-ll

+ ...+ YL/ cesiBg poeeshy, ]
hkll ’ 11! ’ kn_l

+ /G[hl,hz....,hn] -0
In every sum term here, the 4's and k's form a complete complementary set

of 1nd1cés over the integers 1,2,...,n; furthermore, the notation

Glfl""’fn] stands for the determinant of the n-dimensional Gram matrix [11]

.All functions are defined on a common interval [a,b], with the usual inner
product denoted as b

<f,g> = f(t)g*(t)de.

v’




‘dndicated in [8].

.

of the functions fl.....fn, i.e.,
' G[flt""fn] - det[gik - <f1!fk>]p 1.k - 1....,n. (5)

lastly, we remark that the sign of each sum term is to be determined as

The above discussion is equally valid for discrete-time signals.
To this end the functions f(t), gi(t) and hi(t) must be replaced by the
sequences f(k), gi(k) and h:l(k)' and of course the inner product must be

redefined as

k-1
<f,g> = I £(k)g*K)
k=0

APPENDIX B

NOISE ESTIMATION AND CORRECTION
We observed in Section IV that
Ec=F+o’w - (31)

where G is the Gram matrix of the noisy information signals XyseooXogye

Clearly, a good estimator of F is
~ 2 '
F = G-0 W .- (32)
Unfortunately, this estimator is not useable because 02 is unknown. We
must estimate it using a property of the true information signals states
in Section III: The true information signals ¥yoeee Ty 3T€ linearly

dependent and their Gram matrix is singular. Thus we require

7] = lc- 6] =0 (83)
Assuming that 32 is small, and retaining only the first two terms of the
Taylor series, we have
| lol - 8% z](c,w,| = 0 ' (B4)
24




where the notation (G.W):l stands for the matrix obtained by replacing
the ith column of G by the ith column of W.
A little manipulation of (B4) now readily yields relation (16) of

Section 1V.

4.
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APPENDIX €

Joble C)
gEstimoted Poles for Fifty (50) Runs of the Hoisy Signal
of Example 1

. Bethod Used: Pencil-of-Functions

Pole | Pole 2 Pole )

Real imag. Real imag. ' Real Imag.

0.8248 0.0 0.8780 0.2962 0.8780 —=0,2962
0.8407 0.0 0.8741 0.30%1 0.8741 -0,3091
0.8323 0.0 0.8627 0.30861 0.8627 -0.3081
0.8530 0.0 0.8750 0.3196 0.8750 -0.319¢6
0.83%9% 0.0 0.8849 0.3116 0.8849 -0.311¢6
0.8504 0.0 0.84%91 0.3192 0.8491 =0,.3192
0.8501 0.0 0.8879 0.31%0 0.8879 -0,31%0
0.8231 0.0 0.8632 0.30%4 0.8632 ~0.3084
0.8347 0.0 0.8717 0.2871 0.8717 -0.2873
0.8422 0.0 0.8711 0.3132 0.6711 -0.3132
0.847% 0.0 0.8606 0.3137 0.84606 -0,.3137
0.8312 0.0 0.8783 0.3081 0.8783 -0.30831
0.8301 0.0 0.89351 0.2904 0.8951 -0.2904
0.8428 0.0 0.8882 0.3058 0,8882 -0.3058
0.8393 0.0 0.8726 0.3062 0.87246 -0.3062
0.8414 0.0 0.84661 0.3074 0.8661 -0,3074
0.6489 0.0 0.8840 0.3179 0.8840 ~0.3179
0.8519 0.0 0.8826 0.3040 0.8826 -0.3040
0.8279 0,0 0.856866 0.3143 0.8666 ~0,3143
0.8312 0.0 0.8885 0.2889 0.8885 -~0,2689
0.8332 0.0 0.8722 0.3273 0.8722 ~0.3273
0.8561 0.0 0.8835 0.3068 0.8835 ~0.3068
0.841%1 0.0 0.8907 0.3069 0.8907 -~0.3049
0.8538 0.0 0.8691 0.3161 0.8691 ~0.3161
0.8437 0.0 0.8823 0.3099 0.8823 ~0,3099
0.8288 0,0 0.8787 0.2983 0.6787 ~0.2983
0.8370 0.0 0.8760 0.3014 0.8760-~0,3014
0.8490 0.0 0.8764 0.3193 0.8764 ~0,.3193
0.8589 0.0 0.8672 0.3212 0.8672 ~0.3212
0.8128 0.0 0.8719 0.2889 0.8719 ~0.2889
0.8348 0.0 0.68839 0.3128 0.8839 ~0.3128
0.8392 0.0 0.8853 0.3134 0.8853 ~0.3134
0.8547 0.0 0.8830 0.3170 0.8830 -0.3170
0.8448 0.0 0.8982 0.3153 0.8982 -0.31%3
0.8440 0.0 0.8764 0.318) 0.8764 -0.3181
0.8348 0.0 0.68834 0.3094 0.8834 ~0.30%54
0.8365 0.0 0.8774 00,2962 0.8774 ~0.2962
0.8431 0.0 0.8929 0.3083 0.8929 ~0.3083
0.8317 0.0 0.865% 0.3316 0.8659 -0.3316
0.850% 0.0 0.8686 0.3219 0.8486 -0,.3219
0.8497 0.0 0.8852 00,3030 0.88352 -0.3030
0.8487 0.0 0.8806 0.3044 0.8306 ~-0.3044
0.7981 0.0 0.8851 0,267t 0.8831 -0.2671
0.8203 0.0 0.8794 0.3053 0.8794 -0.3053
0.8495 0.0 0.8870 0.3099 0.8870 -0.3099
0.8234 0.0 0.8760 0.3096 0.8760 -0.30%96
0.848S 0.0 0.8750 0.3153 0.8750 =0,31%3
0.8412 0.0 0.8956 0.2985 0.8956 -0.298S
0.8516 0.0 0.8758 00,3249 0.8758 -0,3249
0.8%521 0.0 0.8830 0.3106 0.8850 -0.3106

.
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Ioble 2

Estimated Poles for Fifty (50) Runs of the Hoisy Signal
of Example 1

Method Used: Pencil-of-Functions With Noise Correction

Pole ! Pole 2 Pole 3
Real fmag. Real tmag. Rea) imag.
.- 0.8287 0.0 0.9223 0.2738 0.9223 -0.2738
0.8485 0.0 0.9100 0.2944 0.9100 =0.2944
0.8421. 0.0 0.8972 0.2977 0.8972 =-0.2977 :
0.8613 0.0 0.9121 0.3043 0.9121 =0.3043
0.8405 0.0 0.9165 0.2957 0.91465 -0,29%7
0.68582 0.0 0.9105 0.3002 0.9105 <0.3002
0.6554 0.0 0.9167 0.3001 0.91467 -0.3001
0.8331 0.0 0.9123 0.2908 0.9123 -0.2906
0.8423 0.0 0.9142 0,.2686 0.9142 -0.2684
0.8502 0.0 0.9072 0.2985 0.9072 -0.298%
0.8530 0.0 0.8%44 0.2971 0.8944 —0.2971
0.8390 0.0 0.929¢ 0.2877 0.9298 -0,2877
0.8362 0.0 0.9356 0.2713 0.9356 -0.2713
0.8485 0.0 0.9119 0.2957 0.9119 ~0.2957
" 0.8459 0.0 0.9091 0.28%0 0.9091 -~0.26890
0.8470 0,0 0.9004 0.2882 0.9004 -0.2882
- 0.83462 0.0 0.92146 0.3014 0.9216 ~0.3014
0.8573 0.0 0.9162 0.2853 0.9162 ~0.2653
0.8387 0.0 0.9067 0.3014 0.9067 ~0.3014
0.8353 0.0 0.9273 0.2481 0.9273 ~0.2681
0.8393 0.0 0.9042 0.3152 0.9042 ~0.3152
0.8628 0.0 0.9180 0.2688 0.9180 ~0.2888
0.8467 0.0 . 0.9258 0.2895 0.9258 ~0.2895
0.84619% 0.0 0.9042 0.2999 0.9042 ~0.2999
0.8488 0.0 0.9078 0.2965 0.9078 ~0.296S
0.8351 0.0 0.9145 0.2827 0.9145 -0.2827
0.8429 0.0 0.9161 0.2816 0.9161 ~0.2816
0.8549 0.0 0.9092 0.3025 0.9092 -0.3028
0.865% 0.0 0.90786 0.2997 0.9076 -0.2997
0.8209 0.0 0.9134 0.2748 0.9134 -0.2748
0.8431 0.0 0.9234 0.29%3 0.9234 -0.2953
0.8460 0.0 0.9299 0.2934 0.9299 -0.2934
0.8629 0.0 0.9230 0.2998 0.9230 =0.299S
0.68495 0.0 0.9236 0.3024 0.9236 -0.3024
0.8484 0.0 0.9097 0.2995 0.9097 -0.2993
0.8405 0.0 0.9146 0.2933 0.9146 -0.2953
) 0.8432 0.0 0.9124 00,2804 0.9124 -0.2804
0.8474 0.0 0.9208 0,292% 0.9208 -0.2929%
0.858% 0.0 0.8956 0.3177 0.8936 =0.3177
0.8584 0.0 0.9091 0.3029 0.9091 -0.3029
0.8550 0.0 0.9104 0.2897 0.9104 ~0.2897
0.8542 0.0 0.9126 0.2870 0.9126 ~0.2870
0.8046 0.0 0.9260 0.2919 0.9260 ~0.2519
0.8272 0.0 0.9106 0.2%46 0.9106. ~0.2946
0.8543 0.0 0.9198 0.2906 0.9198 ~0.2906
0.8304 0.0 0.9115 . 0.2956 0.9115 ~0.2966
00,8555 0.0 0.9124 0.2975 - 0.9124 ~0.2975
0.846S 0.0 0.9223 0.2854 0.9223 ~0.2654
0.8587 0.0 0.9082 0.3112 0.9082 -0.3112
0.8590 0.0 0.9232 0.2917 0.9232 ~0.2917
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Iaple C3
Estimated Poles for Fifty (50) Runs of the Hoisy Signal
: of Example 1

Method Used: Prony (or All-Pole Covariance)

Pole | Pole 2 Pole
Real imag. Real imag. Rea! Imag.
0.7664 0.0 -0.4171 0.0 0.03552 0.0
0.8164 0.0 -0.16840 0.0426 -0.1840 -0,0426
0.8087 0.0 -0.1797 0.2130 ~0.1797 -0.2130
0.8244 0.0 -0.1486 0.2706 -0. 1486 —0.2706
0.7762 0.0 -0.5476 0.0 0.2528 0.0
0.6182 0.0 -0.2194 0.0 -0.1087 0.0
0.7642 0.0 -0.2156 0.0 0.1252 0.0
0.796% 0.0 -0.4744 0.0 0.0461 0,0
0.7979 0.0 -0.1184 0.4021 -0.1186 —-0.402%
0.7982 0.0 -0.4296 0.0 0.0885 0.0
0.7813 0.0 -0.4704 0.0 0.1590 0.0
0.8070 0.0 =-0.1618 0.4143 ~0.1618 ~0.4163
0.7954 0.0 -0.252% 0.0 -0.01681 0.0
0.7574 0.0 =-0.5090 0.0 0.4022 0.0
0.7788 0.0 ~-0.4379 0.0 0.1270 0.0
0.7448 0.0 =-0.3444 0.0 00,1136 Q.0
0.2613 0.0 0.7826 0.0 -0.46130 0.0
0.3870 0.0 0.7759 0.0 =-0.6023 0.0
0.76%2 0.0 -0.1222 0.3732 -0.1222 -0.3752
0.3543 0.0 ~0.6700 0.0 0.7706 0.0
0.7547 0.0 -0.2677 0.0 0.0116 0.0
0.6529 0.0 -0.3008 0.0 =-0.0255 0.0
0.7767 0.0 =-0.2661 0.0 0.1377 0.0
0.7962 0.0 -0.3719% 0.0 0.1047 0.0
0.7540 0.0 -0.3987 0.0 0.3012 0.0
0.7944 0.0 =-0.2237 0.0 -0.0779 0.0
0.8068 0.0 -0,.3446 0.0 -0.0093 0.0
0.7731 0.0 =-0.2018 0.0 -0.0566 0.0
0.7827 0.0 -0.5571 0.0 0.2154 0.0
0.2098 0.0 0.7763 0.0 -0.6244 0.0
0.7999 0.0 -0.1537 0.325% -0.1537 -0.3256
0.7866 0,0 -0.2558 0.0 0.0240 0.0
0.8365 0.0 -0.2889 0.0 -0.0384 0.0
0.7855 0.0 -0.3534 0.0 0.2192 0.0
0.7676 0.0 -0.1320 0.1508 -0.1320 ~-0.13506
0.7902 0.0 -0.4643 0.0 0.1714 0.0
0.7805 0.0 -0.4361 0.0 0.1347 0.0
0.7629 0.0 -0.3311 0.0 0.1737 0.0
0.3584 0.0 0.7315 0.0 -0.5916 0.0
0.7631 0.0 ~0.4343 0.0 0.1240 0.0
0.7963 0.0 -0.3931 0.0 0.2374 0.0
0.7991 0.0 -0.3932 0.0 0.1353 0.0
0.7835 0.0 -0.1486 0,.2030 -0. 1486 —-0.2030
0.7904 0.0 ~0.4655 0.0 0.1185 0.0
0.8144 0.0 ~0.0%0% 0.2120 ~0.0%09 -0.2120
0.7876 0.0 ~0.0753 0.3471 -0.0733 —-0.3471
0.7819% 0.0 -0.1089% 0.0279 ~0.1089 -0.0279
0.8052 0.0 -0.3982 0.0 0.1758 0.0
0.7904 0.0 -0.1299 0.23539 =0.1299 -0.2339
0.8098 0.0 -0.1021 0.3111 -0.1021 -0.3111
.3




€0-0S01058°  $0-QSZ0L91°  90-AIBEOZE* $0-0B0T8.S® $0~0TOG696° €O0-GZL90S1° €O-USAESZZ® €O-Q084LLC° €O-G9C05A8°
¥0-0SZOL9T* $0-GEPOISE® 90~06E160L° €O-GEGZHET® €O-0v69CET* CO~QETITIE® €O-GLILIBY® E0-QOCSLES® €O-0SZE969°
»0~Q1BEOZE* $0-G6S160L° €0-AZLIISI® €0-ASYE90E® €O-AVEVELS® €O-GIEIERS® ZO-OZIFNET® ZO-GSOSEZI® SO-06¥Syet =
¥0-Q301826° E€0-QE6ZVEL® EO-GSYSV0E® €0-AL10ELP* ZTO-QEPSLET® ZO-QZZOSSZT® ZO0-AB0VLOYP® ZO-AYv8Z9v°® €O0-0v81ZEL°®
¥0-QZ0S696° €O0-QVEIEEZ® EO-OYEPELS® TO-O0EISLEL® ZO-QvSSVIE® TO-QZZZ199° 10-0090ZZT° 10-06SS6L1°  10-QZZOBET® .
£0-QZL90S1° EO0-0EZIZIE® EO-09E€9ESS* TO-QZTISGZ® ZO-QZZZI99° 10-0SSESST® V10-08ELBEE®  10-090L019° 10-0ZZOINL®
€0-QSEESZTZ® €0-ALILI8Y® TO-GZI9IEL® ZO-QSOFbOb° 10-0090ZZT* 10-QBEEBEE® 10-0Z806€9° 98941 ° zZZieoe*
€0-00B6LLE" €0-Q0SELES® TO-ASOSEZI® ZO-Ov¥3ZIv*® 10-06S5621° 10-0902019° ¥88821° voZovy® 112686°
€0-09€0688° C€O-USZEF69° SO-Q6¥SIBE°~ €0-QvITZEL® 10-0ZZOBEL® 10-3220184° zzZieoc® 112Z6€6° Z091v°Z
(SS~0S09001° =130) XINIUW 1839 .
Svises’ L6L9E°9- s1ov°zZ 00EL 'SP~ ze19°es SV 'BY- v1vZ°ST LY896° L~ 00000°%
HOL23A Y3L3WVEYd O319W11S3
¥0~GELZLSE® EO0~00LLESS® T0-AVELZIT®  10-UE9LZTLL® 480L6€" 189296 ° 2014L°3 ZZ506°1 00000°1 _
v HOLIZA HILIWMYY QILYWILST :
€Z-069201° $0-QLTLEE® €O-GLLESS® 1O~-GELZIT® 10-094ZL4° 90L6€° orZe6”’ 13778 ] Zsv6°1 0000°Y
(TTA)INDS ONY *MOLI3A JTLIHINAS ! ]
. $0-QELSIE® wyUA 3ISION (31VWILE3
66-001°0 ©0~0L1°0 €S-QIE°0 O Z 13a02*IS I°*F .
$0-GL1°0 90+096°C £S~GIEC°0 O Z #IS*13AWNS L300 1P
€S~-0TE"0 #0-GOE°0 ZS-065°0 O I 13dI*IS I°r .
S6-0S9°0 20-011°0 ZS-06G°0  rNHL*IV41°1309 .
#0~Q0E°0 SO+Q¥E*0 Z5-06S°0 O T IIS*LIIACWNS L3O 10 !
GO-Q6Z10€8° ¥0-UOCOL9T® $O-ATSE0ZE" #O0-QWZIBLGE® $0~06Z5696° €O0~A9L9081° €O-069ESTZ* £O-GZB6LLE® €O-09E0SE8*
¥0-QOE0L91° ¥O-Q¥SBISE® ¥O-OIBTS0L° €0-086ZYET® E0-UTOLEEZ® E€O0-UEEIZIE® €O0-UOSLIBY® E€0-06S6LES® E€0~QSZEPST" ;
90-QTSE0ZE" 9$0-G10160L° E0~ALL9IST® E£0-OrS690E° €0-0ZSYELS® €0-0C99S6° TO-AITIIET® ZO-GBSOSEZT® SO~ATLYHEE = .
0-Q¥Z18LE° €0-QBEZYET® EO-OYSEF0E" E0-0SEOELP® ZO-ULISLET® ZO-QOEBSSZ® TO-QOZYHOv°* ZO-09SSIZIY°® €0-0Z61ZEL® ]
. 90-08ZS696° EO0-U10LEEZ® €0-GZSHELS® ZO-OLISLET® ZO-QPOOSIE® ZO-GEPZIFV®  10-UY0ZZT® 10-QvIS6LT® 10-0EZOBET® Q e
£0-09£9051° EO0~0EEITIE® €0-0STIESS® TO-UNESSSZT® ZO-UELZTI99° T0~009E8ST® T0-0SYVEBEE® 10-0ZZL0I9° Y0-QOLOT8L® :
€0~068ESZZ* E0~UOELIBY® ZO-GIFIEL" Z0-QOZvvO¥* 10-Gr902ZZT* 10-ABYSIEE® §0-06014€8° 0683L1° 0E1E0E \
£0-0Z86LLE® E€0-06S6LES® ZTO-OB0SEZT® Z0~-Q9S3Z9%°  10-QU9S6L1°  10-0ZZLO19° 06968L1° 95zZ6ty " 69Z6E6° {
£0-09€0588° E€0-USZET69°® GO-ATLWPYOE =~ €0-0Z61ZEL® T10-0EZOBET® YO-Q0EOIBL*® 0ETEOE® 68Z6€6° 0891y °Z |
(ZG~-GTT6€46S° =13G) XINIVW WUNO ASION {
orzsess” €ENS0°9=" L9E¥° 1T 0864 °Ey~ eLEY 98 2L66°90~ 1889°%Z L68LY L~ 00000°% m
VOLD3A ¥ILINVYYD QILuWILST !
¥0-0LB6EES" Z0-006TSET* 10-GBSZIST®  10-0.Z5086° L19PO¥"* 19560°% S5816°Y €8910°Z 00000°1 ;
HOLO3A YILIWVHYY GILVUILSI ]
€T-06SL01° #0-Q6SEES°. ZO-GSISET® 10-G9ZIST® 10~-0ES066° Z9v0¥° ¥560°1 9814°3 8910°Z 0000°1 ‘
(TTA)LHOS ONY “UOLI3A JILIHANAS “ .
)

1100°00+ 00000°00+ 000 0 O+% ¢ §~T O-%
(°J3HH¥0I ASION) S0 IO LdNW 061 SUYIGI XIJSN X1JI NdSI W41 8111 ¥d
8/£-0 IN-LYIS
0000 °000+ 000000°0+ 000001 °0+ 00000°00+ S¥Z O ZT+0 8 110 ST
(QILUNILSI HO °*G3IAOWIY LON SVIA) SISATWNY °dS3Y¥ ¥INWILLIVIS v

P . TR T

©,POYIY SUOFIUNS-J0-] | Iudd
AQ IsUOASIY 494311038 JO S[SA{Ouy, JO Indino JO3NA0)
0 X1aN3ddV




10+GL0811°0 10+G90LE0°0

e i —

. 0°0  T1-0C4C619°0  T0+Q9S660V°0=
TOOCISEP 0~ COWGEGETET 0~  COWIITLEEG°0= GOVOBILDIT 0= CO+GLOG0OC 0=  ZO+ALYLLLT O

WOLYUIWAN NIVWOG=-@

: 10+3000001 *0 10+Q94L98ZT °0 TOSQSVLTYZ O
ToeasLIICHT 0 €0+060040% °0 TO+O0EVLEER°0 §0+0SECOTS "0 TO+AYBY001°0 10+QB69SYE "0
HOLUNIWONIA NIVWOG-@
00+QELIT9°0 10+U0ZIET O 00+GELY19°0-10+Q0Z3ES *O $0+046011 *0-=10+090LEY "0

2¢0‘g ‘0=10+019C09°0~  00+QrE9LE*O .g-onoon? 00+aYLIT4°0 T0+AYINIT*0~  O00+QVLITE*0-TO+AYIVIL "0~
(S)H G3ZIWOLIVYA 4O SINVLISNOD HOLWIIMN -

LS€°CE *  ZT9SS°TIZ  ZHLE'OIZ  B4w9'0E- 8
L8€8°CE  Z9SS°TIT  ZSLE°OTZ~  BEYI'OE- &
9LYS St £889°L6  9Z8S°S6  SSL1°OZ- 9
9LYS ST £889°L6  9ZBE'S6~  SQLI0Z- - &
1196°01 9048°89 8Ze9°89 S8IL G~ L ZI
1196 °01 90,8°89  BZE9'89~  S8TL°6= " €.
L1Zv°Y . 6TES8 © ¥814°8 1996t . T
L1zy°y 62€6°8 ver1Loe= ,  T9p6°T= T
0 =8121 ud  owss LR ) R
‘e .
TUET T vaLtc-  weut” ZET'=-  TTET® 10-QN69I°~ T0-G9691°
seo® -
scoe° Love® Lov6° 0086° 0086° 1964°  1966° .

Z0~QL60C68° =0ILWY T0-OCYOBZI® =XWHEO-GEEYLZ9® =YOUY3 88 -
10-0ZZZL69° =1300M 88  10-09ESTOL®. WWNOIS S8 .

0°0 ZEEB00°0 19€460°0~ - EYI1LE®D
SEHTO9°0~ 0TT49*°0 0€48EC "0~ 0€00£0°0 0°0 :
Sv.L86L°0 €LELIE T 00518y °TT CEO0EL "Sr=
16261906 PSor 8y~ - PPINT LT VLivE96 L= 000000°1 a
. (00¢008041 "0 =xWd) (2)v/t2)@ 4L s :

. EE -
— O PO o o . gy S ——

. mmsa— s ceen

Ra
g -

DY L i S Y B A T

POy

— ™
CRETRC T ey

_ -
- . ’ K

A

AZs INE 1Y

e




v

10+04686€ *0~-10+086214°0

W TN pvsiha o * i — g e 2ad
0°0 11-0418986°0  ZO+Qvi€001°0
CO+aSItITE O~ ZO+GOSITIC 0  $O+QPETANE O~ CO0ATLEOLI O~ €OCURBEEZ6°0-  ZO+OTOTSLY O~
WOLYYIUNN NIVKHOG-S
1043000001 °0 10400Z208Z°0 ZO+QSELYST "0
Zo+a16€115°0 €O+Q60L9LT°0  €O+GV669E1I°0  €0+Q¥ZTEZZ O T0+ULOZBY 0  ZO+AYISIZT ‘O
: YOLYNIWONIA NIOG-8
00+Q6TH6Z°0 104QSPLET 0  00+Q6T¥6Z°0-10+05¥L61°0 10+04S8BE 0 10+08SZTL°0
00+QZEY09°0~10+0V0T99°0=  00+0Z8009°0 10+AVO199°0= 00+0Z699Z°0 1040668vZ°0~  00+40TEI9Z °0~10+06680Z *0=
(S)H Q3ZI¥OLOVA 4O SINVISNOD HOLVHIHNN
$960°9¢ 68ZL°9ZZ 995 °S22 £616°Z2Z~ 8
$960°9€ 6SZL°9ZZ VYIS R2Z~ E£616°ZZ~ L
€88°81 €229°811 L920°018 ZS0L°ZE~ 9
€.88°8% €2.9°811 L9L0°b11=  ZSOL°ZE~ s
8926°01 9696 °89 €9Y1°89 SYZ9°0T~ v
8926°01 9696°89 €941 °89~ SvZ9°0V= €
¥€90°Z tv9s 2t zZ889°11 €C19°G- z
¥€90°T ¥996°27 2889°11= €S19°G~ 1
0 =§421 ¥3 ows 18 _ us ww%.r_no
8L0¥° €L02"~ €L02° 00€T*~ 0081°  10-048Z2°~ -o..ﬁomwm“
698" ovie’ vi6° 80L6° 00L6° 8886° £886°
196265° ~OILYN T0-UBELFZY® =XUWTO-G0BTLOT® =YONHI S8
10-0Z9194S° «T3AON 8S  10-G9E€6Z0L° = WNOLIS SS
0'0 92£09€1°0~ SEOZIL O 99005 1=
166892 °Y £459600° 1~ 8840V€°0 #810¥0°0~ 00
ovZSSL 0 YIENSO *9= STLIEP"TIZ 86204 °EV=
0CaLEY 95 WL3L66°9V~ zZ0L889°vZ L968LY "L~ 000000°1
. (00+QOSOLE "0 =XUMd) (2)Y/(2)d Il 183
S0-06Z10E8° #0-G0COL9T® $0-UT6E0ZE° HO-OYZIOLS® $O~Q8ZS696° EO0-GYLFOST® E0-066ESZZ° E0-(UTBELLE® EO0-09E0568°
$0~00E0L91* $O-Q¥SBIGE® $0-018160L° E€0-0B6ZYET® EO0-GVOLEEZ® EO0~QEEIZIE® E0-Q0ELTIBY® E€O-06S6LES® E0-QSZEFET®
¥0-Q16E0ZE® ¥O-018160L° EO0-ULL9I61° €0-QYSE90E" E€0~GISPELS® EO0~QSIIESSE® TO-QFTI9IET® ZO-UBOSEZT® SO-QIL¥YHOE'=
¥0-QPZ18LE° EO0~QB6ZPET® EO-AYSS90E°® E0-USE0ELI® ZO0-OL96LET® ZO-QOEHSSZ® ZO~-QOZHyOr® Z0-U9SSZ9° EO-UZTEIZEL®
0-0U8ZS696° €O0~UTOLEEZ® €0-GTSYELS® ZO-0L96LE1° ZO-O0Y00STE® ZO-GEYZIF9® 10-0v90ZZT° 10-0v9S6L1° 10-QEZOSEL®
€0-09L90ST°* €0-QEEIZIE® €0-0ST9ESE° ZO-Q0EDSSZ® ZO-OEHZII9° T10-Q09EBSI® TO-O3¥6BEE® T10-0ZTLO19° 10=-Q0E£018L°
€0-Q68ESZZ® €0-00CLIBY® ZO-AITIIIET® - ZO-QOZ¥¥YO¥® 10-O¥90ZTT® 10~AIWEBEE® T0-uSO16EB® 068841 ° 0c1€0E"
€0-0ZB6LLE® EO-06GELES® ZO-OBOSEZT® Z0-09S8Z9%° 10~0v9S6L1°  T0~-0ZZLOT9® 0686841 ° 98Z6vy* 68Z6E6"
€0~09€0568° €O0-GSZET69° GO-ATLYYEE = E0-QTSITEL® 10-0EZ08ET* 10-GOEOTSL® OE1E0E* 68Z6€6° 0891¢°Z
(ZS-01T6E65° =130) XINLVN WUNO ASION
or2esL’ 9€¥50°9- L9€9°12Z 0864 ‘Ch~ 8LEV° 98 TL66 "9~ £889°vZ L68Lp L= 00000°S
YOAI3A HILIWVWNG ILUMLILEI
Y0-QLB6EES® ZTO-G0S1GET" 10-08S2IS1°  10~(225086° L19%09° 1860°1 cS8T16°Y €8910°Z 00000°T
HOLIIA YILIWVHYY QILVWILED
€Z-G6SL01" $0-G66EES° ZTO-Q6ISCT* TO-A9ZIST® 10-GES086° Z9v00° 9560°7 9816°1 €910°Z 0000°%
(TTAYLHOS ONY *¥OLI3A DTLIHINAS
00000°00¢ 000 0 O¢3=l=i=% O=% -
(°OJUUOINN) 40 10 LJdNW OB SVIEI XIJN XIJI NJSI WIMI SiII N4~
. 8/¢~0 1vw3s 4







